Quiz C12.1

Simple harmonic motion

1. The graph shows the variation of acceleration with displacement.

It may be deduced that simple harmonic oscillations take place because the graph

- **A** is a straight line.
- **B** goes through the origin.
- **C** goes through the origin and is a straight line.
- **D** goes through the origin and is a straight line with negative gradient.
- **2.** The graph shows the variation of acceleration with displacement for a particle performing simple harmonic oscillations.

What is the period of oscillations in seconds?

3. The graph shows the variation with time of the displacement of a particle performing simple harmonic oscillations.

What is correct about the magnitude of the velocity and of the acceleration of point P?

	Velocity	Acceleration	
Α	Maximum	Maximum	
В	Maximum	Zero	
С	Zero	Zero Maximum	
D	Zero	Zero	

- **4.** The period of simple harmonic oscillations is *T*. What is the period of oscillations when the amplitude is halved?
 - $A \quad \frac{T}{4} \\ B \quad \frac{T}{2} \\ C \quad T \\ D \quad 2T$

5. The graph shows the variation with time of the acceleration of a particle performing simple harmonic oscillations.

What is correct at points P and Q?

	Р	Q
Α	Kinetic energy is a maximum	Potential energy is a minimum
В	Kinetic energy is a maximum	Potential energy is a maximum
С	Kinetic energy is a minimum	Potential energy is a minimum
D	Kinetic energy is a minimum	Potential energy is a maximum

6. A pendulum has period *T*. The length and the mass of the bob of the pendulum are both doubled. What is the new period?

A
$$\frac{T}{2}$$

B $\frac{T}{\sqrt{2}}$
C $T\sqrt{2}$
D $2T$

- **7.** The acceleration of free fall on a planet is 4 times as large as that on Earth. A mass spring system has period *T* on Earth. What is the period on the planet?
 - **A** $\frac{T}{2}$ **B** T **C** $T\sqrt{2}$ **D** 2T
- **8.** The graph shows the variation with time of the velocity of a particle performing simple harmonic oscillations. The amplitude of the motion is *P*.

What does the shaded area represent?

A 4*P*
B 2*P*
C *P*
D
$$\frac{P}{2}$$

9. The graph shows the variation with time of the displacement of a particle performing simple harmonic oscillations with period *T*.

Which graph shows the variation with time of the kinetic energy of the particle?

10. The graph shows the variation with displacement *x* of the potential energy of a particle of mass 2.0 kg performing simple harmonic oscillations.

Quiz C12.1 Answers		
1	D	
2	В	
3	С	
4	С	
5	С	
6	С	
7	В	
8	В	
9	Α	
10	D	